
,.

.

An Efllcient  Variable Lcngt,h Coding Scheme
for an IID Source*

Kar-Ming Cheung Aaron Kicly
kll]c]lc:llllg@lsll  allllol].  jlJ].llasa.g;o~~ flaroII Klsllal~ll (J1l. jl)l.llasa.gov

‘l’cl: 818-393-9480 lc1: 818-354-6951

Mail Stop 238-420, Jet Propulsion I,aborai  ory,<’asadcvla,  CA 91109 A-1
((,(;( ... ;,.. Cf”l ~~~

Abstract- -- In this article wc examine a schcIIlc that, uscs two a]tcrnatin.g Huff-
man codes to cncodc a discxctc  indcpcndc]lt  and itlcntical]y distributed source with
a dolni]lal]tl symbol, OIIC IIufrnlan coclc cncoclcs t] lc length of ru~]s of the dominant
symbol, tllc Otll]cr  cncodcs t,hc rcmainin.g  symbols. Wc call tlllis  combined strategy
alt,crnating  rul)lcngt,h  l-fufrman (A I{,H ) coding. This is a popular schcmc,  usccl for
cxalnl)lc  ill tllc l~flicicnt  l’ymnid  lmagc  Coder (El ‘IC) subballd  coding algorithm.

Sillcc t,llc runlcngths  of the dominant, symbol arc gcolnctrical]y  distributed, they
call lx: cllcodcd  using the lluff~na,n  codes identified by Golomb [1] and later gcncralizcd
by Gallagyr a)ld Van Voorhis [2]. ~’his ruldcngtll  encoding allows the most likely
symbol to bc cncodcd using lCSS than onc bit pcr sample, providiug  a simple method
of ovmwming  a drawback of ~mcfix  codes- that  t] ]C rcdundan(:y  al)proac:hcs  onc as
the largest symbol probability }] approaches one. l~or AIU 1 coding, the redundancy
a~)lnmacl  Ics mm as 1) approaches one.

Coml)aring  the average code rate of All]  I with  direct ]Iuff’rml  coding wc find that

1. If 1’< 1 /3, Al{,]] is less cfficicnt,  than Huflman coding.

2. If 1/3 <1’< 2/5, AR]] is lCSS cfficicnt than IIuffmall coding)  depending on the
source d istlributliol  I.

3. If 2/5 <1’< ().618, Al{,}] and Iluffman  codi]lg  arc cqual]y  cfricicnt.

4. If 1’>0.618, Al{}l is more cfficicnt than Iluflinan  coding,

Wc give cxa.mldcs of applying AI{H coc]ing  to some sl)ccific sources.

*’1’llc  rcscarc]l dcscribccl ill t,llis abstract was car] icd out  at t,hc Jet I’ropu]sion Laboratory, Califor-
]Iia lllstitutc of ‘Jk:clllmlogy, ul)dcr contract, with the National Acrollautics  allcl S])ace Administration.

1



. .

1 Introduction

Ccnlsidcr  a discrctc  source with cmc symbol that  occurs sign ificalltlly  mom often than
tllc others. ‘1’l)is  situation is common in many data compression a~q)]ications.  For
cxaml)lc, in ~ncdictlivc coding the (!rror sal])plcs tt!nd to bc SI [la]], or in transform
based coding systems, e.g. subband  codinp; or discrete  cosine transform, the signal
c]lcrgy is usually mom concclltrat)cd  in the low fr(:qucmcy cm l~mncntls.  In each of
these cases, tllc data arc quantized before compression, and tlic quantized data is
oftlcn a low cnt(ro~)y source consisting of lo]g runs of zeros intcrsl)crscd  with small
llollzcro  Valu(!s.

A well-known drawback of lIufIn~an  coding in this case is ill at while the entropy
may lx: near zero, the rate of a IIuffman  code call never bc ICSS than onc since the
1 IuflInan code assigns a codeword to cvcIy source symbol. A common means of
tackling  this problcm is to cncodc th(! rum of the most,  ~mobabl(!  symbol separately
from tlllc!  otllcr sylnbo]s.  ‘1’his is more cfficicntr than l]uffman cwlinp; when onc symbol
is highly ]nobablc.

IJor c!xam~)lc,  tllc scqucncc 0,1,0,0,0,2, --1 can I)c thought of as 01, 1,03,2,0°, –1,
i.(!., a scquc]lcc  tlllatl alternates b[!twccn the separate alpllabctfs  {Oi : i 2 O} and tlhc
,~o]]zcro  illt,cg~rs.  WC insert, t,hc sylIIbol ()() bctw(:cl) a(ijacclli  1101IZWO SyIllbOIS to

CI I sure that  tlllc  scqucncc is alt,crnating. ‘J’his allo~vs  us to c]lcodc tll(!  runs of zeros
a]ld tl]c nonmro  values using two different Iluffn)an  codes. WC call this approach
altcrllatin.g  ru]llc!ngth  ]Iufrmall (ARH) codilg.  This strategy is l)articularly  suitable
for a oll(:-lms  ada~)tivc  i~ll})lcll~cl~tatioll,  which wc will discuss ill a companion paper
[3].

Combined run]cngth  and Huffman codil  g is IJopular  ill many well-know]l com-
lmssioll  systems. Variations of this tcchniquc  arc used in the bascli~lc Joimt I’ho-
fogmyhic  lkryc:7’1 (Wouy (.J1’EG ) algorithm [4], the E’icic7~i l’gm7nzd  lnmge Coder
(1’;I’IC) subba,]d  coding algorithm [5], and other i,pplicatio]~s.  ‘J’l~c  baseline JPFX
schclnc  combines each run of zeros with tllc subsequent noI]zcro value and c)lcodcs
thcl]l  tfogcthcr  using a static lIuffnlan  code. ‘J’hc .Jl>EG algorit  1111) provides reason-
ably good comlmssiou  pcrfommncc  for most natul  al images [6]. The EI)IC subband
coding systlcm cncodcs the rul]s of zeros and the non-zero symbols using two scparatlc
IIuflmal) md[!s. lhth liufrman  code tables arc sent with the c{mll)rcsscd  data [5].

1 lcsl)itc the popularity of combined runlcngth  and Hufflnall  codes, little  analysis
has been done in this arm. ‘1’hc goal of this l)a~x:r is to qualltjify the compression
efficiency of AIU1 coding, and to compare it to dirc(:t, IIuffma]l  codi]lg  for 111) sources.
‘1’l]c results ]Mmcntcd here arc applicable to predictive codi)l~, and subband  coding
s,ystcl]ls wI)c]) t}lc  quant,izcd  output to the entropy coder is 111 ). P’or block  transform
codillgs  like I )iscrctc  Cosine ‘1’ransform  and Karhu ncn-1 ,OCVC ‘llransforln,  wc develop
similar results in an ulxoming  paper [7] by taking  i] ko accou]lt, IIIC fact,  that the signal
cllcrgy  is varied in the different frequency components.

]n Section 2 wc evaluate the rate and rcdundaucy  of the Altll schcmc, and derive
a tight, bound 0]1 A IUl redundancy as a function of the largest symbol probability.
W C co)n~)arc Al{,l 1 with direct Huffman coding , and show I]OW t}lc  lar.gcstj  symbol
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lnwbabilit,y  dctcrmincx  whcth~!r AIU1 or direct 1 Iufrnlan coding is lnorc cfficicnt.
in ScctioI)  3, WC! usc the results of Sccticm 2 to find a bout)d on ARI1 rate. WC

also give (!xalnlics  of a,pplyinp;  A I{,H codinp;  to two specific sourcm.
1]] Section 4, WC!  discuss future work a~ld give s(nnc ccmcludi]lg  remarks.

2 Alternating Runlength Huff man Coding

2.1 Rate of ARH coding

]Jctl A dc]lotc a dism!tc 111) source, and lctl S denote the source symbol with largest
])rohbilit,y 1’. ‘J’h(! }Iufflnan  coding algor i thm al)l)licd  to A assigl]s a codeword to
cac]l symbol in a way that minimizes the cxpcctc(l codeword lcngt]l  (or code rate),
wllicl) wc denote by lil] (A). M7c refer to t)ll(! appli(:ation of a 1 luffl)ml  code dircct]y
to A (i.e., without first, combining source symlmls) as direct Hufrman coding.

‘J’llc redundancy of direct IIuffman coding is p]] (A) =:- lill (A) – M(A), where
M(A) dcllotcs the entropy of A. ‘1’here arc myriad bounds on bounds on IilI (A) and
p]] (A) [9, 10, 11, 12, 13, 14, 15, ]6]. It is well-kl]own that  pff (A) approaches I a s
1’ alqnwacllcs  1, ‘]’his is a co])scqucncc  of’ the fa(t that,  a IIl]frman code assigns a
codcW70rd to cacll symlml, and hence cannot, have late less tllall 01 ]c, no matter how
small t,hc cntlrol)y.

I,ct ~’ dcllotc t,hc source formed by deleting cac] 1 occurrc]lcc of S from ~, IIccausc
A k 111), the runlcngth  i of t,hc! most probable syIIIbol S is distributed according to
tllc gcolnctric  distribution

Prot)[s~]  = (1 - l’)1’~.

W C cllcodc  tll(!sc run]cngths  using the o~)tilrlal  (IIuffma,n) cllcoding for this distribu-
tion: the Gal]ag(!r and Van Voorhis (GVH ) code [2], ‘1’hc rcmailiin,g  symbols (i.e.,
tlhc mum: A’) is sclmatlcly  c]lcoclcd usillg  dircctj IIuffman coclillg.

‘1’llc (;V11 codeword for runlcngth  i consists of j zeros fo]]owcd by a onc and a
codeword t)llatl  rcprcscl)ts  z mod 1, where

and j Q

w] l(!r(!

z//?j. l’lroln [2], the average lcn.gth of a GV1l codeword is

],k
1.(1’) ‘= 1 + [lc)[’;~  ‘~ +- j ‘~

‘1’llc l)a,rtlicular GV11 code call bc identified cc)nlplct,cly  by tllc ~mamctcr /. This is
cspccia]ly convcnicnt,  for ada~)tivc  implcmclltations  bccausc  it eliminates the need to
tlransn)it)  a long code tlab]c!
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0 dc!tcrminc  the rate of ARIi  coding, consider tllc cncodill~; of the source scqumcc

~ X, whcm X is some symbol from A’. lhc cxpcctcd  number of source symbols
i

in such a scqucllcc  is

1’1[1 +-i] = 1 + ~i(l – I’)P = –--]

1-- 1’i= ()

and tllc cxlmctcd number of cncodcd bits for the scqucncc is 1/]1 (A’) +- 1~(1}). ‘1’hus
the aw!ragc rate of A1<JI is

lkmlds cm rate (or redundancy) of Huffnml  codes can bc used to bound the quantity

R]] (A’) in the above cxlmcssion, which produc~!s a bound tl)c rate of AIU1 coding.
WC give an cxamldc  of such a bound in Section 3.

2.2 Comparing ARH and direct Huff man Cocling

‘J’O d(:t,crn]inc  whctll(!r  ARH or direct Huffma,n co(ling is mom cflicicnt,  wc wa]lt to
compare (1) to Itll  (A). If l’~ 2/5, a Hufln]an code for A assigns a onc bit codeword
to the l~lost ~mobablc symbol [9, Theorcm  1], [8, p. 122 l)roblcm 22], producing
1{1) (A) L 1 +- (1 – 1’)1/]] (A’). Comparing this quantity 10 (1), wc find that for this
range of }>, Al{,] 1 is more cfficicnt,  than direct IIufl’lnan coding whcllcvcr

(1 -- P)lJ(P) <1

‘1’hc quantity 1 + v is the famous “golden ratio.”
Wllcll  1’5 ~, wc find that I,(l’) ==: 1/(1 -- l’) allcl  (1) bcconlcs

1 + (1 -- P)R]]( A’).

in fact the AIU I stmtc!gy in this case reduces to encoding; a mro  each time the
source clnitls  S, otfhcrwisc  encoding a onc followecl by the Huff t] lan coclcword  for the
lCSS  l)rol)ablc  symbol. Thus, this strategy assigns a binary codeword to each source
symbol, and hcncc can never outperform t hc optil lml assignl  ncnt, which is obt aincd
by dirmt IIufl]llall  coding.

So if a I1ufl”n~an  code for A assigns a onc bit codeword to S, tllc~l  it will have the
same l)crfornmncc as ARH, otherwise it, will perform better. If 2/5 < 1’ < ~, then
the AIU1 strategy is ill fact an optimal IIuffnlan c:odc  for A. If 1’ < 1 /3, then the

most probable symbol has a codeword of kvgth  at least two [8, I). 122 I’roblcm 22],
and ilms in this case AIW  will always bc lCSS cfficicnt t,hall direct IIufrman coding.

If 1/3 < 1’ < 2/5, then the Iluffrnan codcw(md length for the most probab]c
sylnbo]  depends on tfhc probability distribution 0] I A, not just olI l}. F’or example,



applying tlhc  Ilufrmall  algorithm to t)hc! distributions {3/8, 1/5, 1 /5, 1/5, 1/40} and
{3/8, 5/32,  5/32, 5/32, 5/32} wc find that the most probab]c  sy]nlml  has a codcworcl
of lcl@h  two bits  for tlhc first distribution and only onc bit for the second, even
tlllougll  1’ = 3/8 in both casc:s.

‘J)o summarize, for any 1111 source with largest symbol lnwbability  1’,

1. If }’ <1 /3, AIU1 is lCSS cfficicnt than dirmt 1 luffman codi]]g.

2. If 1/3 s 1’< 2/5, the efficiency of ARH is lCSS than  or equal to that  of direct
IIufIman  coding, clcpcnding  on t,h[!  probability distribution] o]) A.

3. If 2/5 s 1’ s y, AIUI al]d direct Huflinan coding arc cqudly  cfficicnt.

4. If 1’> ~, AIUI is more cfficicmt  than direct lluff’ma~l codil]g.

‘1’l)us ill a lmlctlical systcm,  wc do not require a great deal of accuracy in dctcr-
lnilling  tlllc  tllc lar.gcst source symbol probability 10 select which coding schcrnc  to
U S C. It is sufIicicllt  to dctcrminc  whcth(!r the most probable sy]nbol  has probability
less tl)all  2/5 or greater than -y,

2.3 Redundancy of ARH coding

Fhm the grouping property of cntrol)y,  %!(A) == ?/2(1’) -t (1 - I’)M(A’),  where ?-12

dcnotfcs the binary  cntlrol)y function. ‘1’hus the rcdllndallcy  of All]]  is

[)A1{I1 (~) = ~~ARII (~) ‘-  ?t(~)

= (1 - I’)[L(l”’) +- IiJ,,(A’)] - H2(I’) -- (1 - ]’)2L(A’)

=- (1 - )’) [ L ( P ) +  p,,(x)] - H20’) (2)

< (1 – 1’) [L(l’)  + 1] - li~(l’). (3)

‘1’l]c inc!quality  follows bccaus(! the r[!dundancy of a Huffman COCIC is lCSS than one.
‘J’his bound is lnonot,onimlly dccrcasing, and not, surprising y, s] mws that  the rc-
dul)dancy  (and hcncc t,hc rat(!) of A RH approaches zero as 1 ) al)~)roachcs  one, l’he
bound is tight  for ally 1’> 2/5: tl~c redundancy of ARII coding for the distribution
{1’, 1 --1’-- F, 6} alj~)roachcs  (3) as c -+ (). Wc show the bound (3) in Figure 1 along
with all ul)lm bound on the redundancy of direct IIufrmall (:odil)g [16]. This fi.gurc
SI1OWS t,llat a coding syst,cm capab]c of switchi~lg  I)ct,wccn  AIU1 and direct, IIufhnan
coding d(!pcndin.g  on the value of 1) has maxilnultl rcdullclallcy  of 1/2 occurring at
1’ =-- 1 /2.

3 Examples

3.1 Bound on rate in terms of the alphabet size

Sulqmsc tlllc  source alphabet has (finite) sim n. ‘J’llc!n R],(X) < pog2(n – 1)], thus
from (1) ,

1{~}~~,  (A) < (1 -- p) [L(P) +- pog2(7t - 1 )-]] .
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IPigurc 1: LJppcr bounds on redundancy of AR] I and direct IIuffman  coding,

Figure 2 sl~ows  tl}is  uppm  bound for n = 4, 16, M, and 256. ‘J’hcsc upper bounds
]nay bc very 100 SC, particularly whcm

3.2 Geometric source

Suppose that the source alphabet is

ti(A’) is small.

the set, of nol]-negat,ivc  inlcgcrs,  and that  the
somm A has finitlc mean. In this case, the geometric distribution 1 ‘rob [z] == 1’(1 – ~)z
maximims  tllc soumc entropy [8]. Let ~1 dmlotc t,llis  source.

~~ has cntroly  M(Q1 ) = Mz(l’)/l’  and direct IIlffman code rate lt~~ (~~ ) = L(3 –
1’) [2], ‘1’hc rc!dumd source ~~ is also gyomctrically  distributed and has direct  Huffman
code rate Itzt (G( ) = 1.(1 – ~>). %bst,ituting  into (1), wc find that,  the AIU1 code rate
for {his source is

l{~]~]~(g~)  = (1 – 1’) [L(P)  + L(1 – 1’)].

‘1’his quantity al )proachcs cm as p approaches zero. ‘1’hus tllc rate of ARH coding
lnay bc unbounded even though the redundancy is not.

‘1’hc redundancy  of direct IIuffman  coding on ~1 is

and the redundancy of AIW is
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l“i,gurc 2: Upper  bounds on AIW rate for alphalmt  size n.

Tl]csc rcdundmlcics  arc shown  in F’igurc  3. WC fil ld that for this source, the points
where runlcngth  ~ ~uffman  coding bccomc!s eclua] to and sup(!rior  to direct ~luffman
coding arc 1’ =-- 1 – ~ and 1> =’ y.

3.3 Two-sided Geometric Source

Consider the two-sided ,g30mdric source ~~ with ])robability  distribution

( 1), ~ =. ()

“rob’’]=’{ (;’+9(+ ’’)’’” ‘+0
‘1’llis  is tll(! distributio]l  produced by a u~iiformly  quantized 1,aplacian  source with
q/o = --Win (1 – 1’), where q is the quantizcr  stc])sizc and 02 is the variance of the
IJaplacian distribution.

lfl’>&–2= .236 then zero is tile most I n-obably  source symbol. For this
ran,gc of 1), wc plot in Figure 4 the redundancy fol ARH and direct Huffman coding
for a truncated version of GZ (eliminating tllc ilkcgcrs  with map;llitude  exceeding 20).
‘1’hc grapl]  indicates that,  for this source, direct Iluflman  coding is more cfficicnt for
1’ < .394, that AIU1 is more cfficicnt whc)l  }’ > ~, and that the two schcmcs arc
cquiva]cntl  when .394 s 1) < ~.



0.25

().2-

-—
o.15-

...
...

>..

/
o.1-

/
..
/

/“’

o,05-
,..””

.>””#..
. ...”. . . . . ...”

0 4, -YJ————  —~
0 0 0

P

1+’igurc  4: ]icdundancy  of AR]] and direct IIuffman coding fol two-sided Geometric
soul-cc.

5. a block-oriclltatioll  to alleviate memory rcquircmcnt

(i. efficiency over a wide range of (!ntropy

7. it can lx easily combinml  with other  colllln~l~licatiolls flll](:tio~lalitics  like crror-
col)tt~.i~lll~cllt  and packctization

Acknowledgment
‘1’lIc autl]ors  arc grat,cful to l’adhmic  Smyth for his }lclpful  comlncnts.

References

[1] s. Golomb, “lim]cngth  Encodings,” ]Efifi 7ha71s. 171forn/L l’}leory, vol. 1’1’-12,
])]).399-401,  July 1996.

[2] 1{. Gallagcr  and 1). Van Voorhis, “optima] Solwce Codes for Gcomctrical]y  I]is-
tributcd  lntcgcr  Alphabets,” llfllE Trans. Inform 71hcory, vol. IT-21, pp. 228-
230, March 1975.

[3] K. Chcung, ‘(l’;fficicni]y  ]Iuffman  Coding of a 1 )iscrctc  ]Ildt!lmldcntly  and Iden-
tically l)istributcd  Source with a Dominant Symbol - A l’ast ll~l~~lclllcllt,ation,”
ITl pl’cpur(ltion.

[4] W. l’cllncbak(!r  and J. Mitchell, JJ’EG Still  ~?~~,aqe  Data Compression Standard,
Ncw York, va]] Nost rand Reinhold ,  1993. ‘



v

“0 ‘

[5]

[6]

&\& ’-( ‘)”

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

E. Adclson and E. Simoncwlli, “SubbtLIld  Image Coding with l’hrcc-tap Pyra-
mids,” l’icturc  Coding Symposium, 1990, Canlbridgc,  MA.

S. IIolil]ar, K.-M. Chcung, 1. Onyszchuk, F. Pollara  and S. Arnold, “Compressed/
l{,cconstructcd ‘J’cst Images for CRAF/Cassini  ,“ l’hc Tl~A l’mgmss  Report vol.
42-104: ~Sc&mlber - Dcccmlx!r, 1990, Jc!t l’repulsion I,al)oratory,  l)asadcna,
February 15, 1991.

“V~lli[\l)lc-l,c~lgtll  Coding of Quantized Block-rl ‘ransformcd I lata  ,“ in preparation.

T. Cover ancl J. ‘1’homas,  Elements of Informoiion  Theory, Wiley, 1991.

0. Johnscn,  “(h the Redundancy of IJinary 1 Iuffman Codes,” lEEE l$wn. In-
fo7wL Thcorg,  vol. 1’1’-26, pp. 220-222, March, 1980.

IL Cal)occlli,  1<. Giancar]o,  and 1. ‘1’ancja, “13(mnds  on the redundancy of Huff-
lnall  Cod(!s,” lh’111~  7i-uns.  Inform. Theory,  vol. IT-32, pp. 854-857, Nov. 1986.

13. Molltgmncry  a n d  .J. Abrahams, ‘(011  tho Redundancy of Binary  l’rcfix-
Conditicm  Codes for k’initc and ]nfinitc Sources,” IEBE ~}”{Lns. Inform. Theory,
vol. 1~’-33, pp. 156-160, Jan. 1987.

IL Cal)occlli  and A. Santis, ‘Tight  (Jppcr  130uI Ids on the IMundancy of ~Iuffman

Codes,” lh’l;}j ~hms. Inform. Theory, VO]. ]q’- 35, Scpt. 1989.

l}. Slnytl], “1’;lltro~>y-l~asc(l  Rounds on the Redundancy of 11 uffman Codes”, IEEE
17tter7mtional Symposium on lnformaiion Theory, San l)icgo, CA, Jan. 14-19,
1990,

1{. Ycung,  “l,ocal li,cdunciancy  and Progrcssiw: Ilounds  on the Expcctcd  I,cngth
of a IIuflman  Code,” IEEE  lkans.  lrLform. I’hcorg, vol. 37, pp. 687-691, May
1991.

IL Ycung,  “Alphabetic Codes Revisited,” lEJ;E  Trans. lnforrn. Theory, vol. 37,
1)1) 564-572, Nlay 1991.

D. hflanstct,tcn, “rl’ight  l)ounds  on the Rcdul]dancy  of 1 Iuffman Codes,” IEEL’
Ykns. 171~07m. 7’heory,  vol. IT-38, no. 1, Jan. 1992, ~q~. 144-151.

—.


